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Abstract—Semantic segmentation has been a research focus 

of scene parsing and robotic manipulation. And increasing 

efforts are being made to empower geometry-solely robotic 

mapping with semantic sensing ability in complex spatial 

cognition tasks, the so-called semantic mapping. However, 

semantic mapping has not yet fully exploited the state-of-the-

art of semantic segmentation and suffered limitations of 

application scenario, number of object category and accuracy 

of object detection. Towards a robust semantic mapping 

solution, we propose a RGB-D based fusion method that 

combines an improved ElasticFusion with PSPNet. PSPNet has 

the potential for breaking restrictions of limited object 

category in semantic segmentation of RGB images. As for map 

rendering, the improved ElasticFusion algorithm is validated 

for its robust performance in indoor scenes in terms of overall 

model accuracy and integral object shape geometry. Based on 

the two aforementioned modules, we fuses the semantic images 

and the depth images to generate 3D point cloud with semantic 

information. Experiments on the ICL-NUIM datasets have 

proven the feasibility of the proposed method.  

Keywords—semantic mapping, ICP algorithm, ElasticFusion 

I. INTRODUCTION 

Maps are essential tools for robots to understand and 
reason about the surrounding environments [1]. However, 
making maps for robots is still a challenging research pursuit. 
With the considerable progress in the field of SLAM 
(Simultaneous Localization And Mapping), robots can map 
the environment with sparse or dense point cloud and 
navigate with 2D or 3D occupancy grid maps [2]. The maps 
made by robots usually contain rich and accurate geometric 
information but lack semantic information. Without built-in 
semantics in the map, it would become much difficult or 
even impossible for a robot to understand its surroundings 
and perform complex tasks. In order to improve robots’ 
autonomy, it’s desirable to equip maps with semantic 
concepts of corresponding geometric entities, namely 
semantic mapping. Maps that integrate both semantic and 
geometric information promote robots’ abilities from path 
planning to task-driven planning. At present, the robotic 
semantic mapping researches are mostly performed as a 
objects’ classification problem, which is at the bottom of the 
pyramid of semantic mapping [2]. 

Semantic mapping can be realized using a framework 
that consists of two modules, semantic segmentation 
performed by SVM or CNNs and map rendering performed 
by SLAM algorithms using RGB-D, monocular or stereo 
sensors [3,4]. Semantic segmentation is to label the relevant 
information of objects and currently it mainly focuses on 
objects’ classifications. The advent of FCNs (Fully 
Convolutional Networks) [5] has significantly boosted the 
accuracy of semantic segmentation and enabled to handle 

input images of arbitrary sizes. A variety of convolutional 
neural networks have been developed for semantic 
segmentation thereafter, while achieving improvements 
based on the FCNs’ structure [6,7,8,9]. In these advanced 
networks, the Pyramid Scene Parsing Network (PSPNet) [6] 
achieves prime performance by incorporating robust global 
features and proposing an optimization strategy with deeply 
supervised loss. Therefore, PSPNet is utilized for semantic 
segmentation for its state-of-the-art performance. 

As for map rendering, it integrates semantic information 
with geometric information to make 2D grid maps or 3D 
point cloud maps. With rich geometric and texture 
information, dense 3D point cloud provides a better scene 
representation than 2D maps and sparse 3D point cloud maps. 
Dense point clouds are usually generated by 3D laser scans 
or RGB-D sensors. And mapping solutions based on RGB-D 
sensors benefit from their economic, portability and 
efficiency concerns. ElasticFusion [10] is more suitable for 
representing semantic information compared with other 
mature SLAM algorithms using RGB-D sensors, such as 
RGB-D SLAM [11], Kintinuous [12] and BundleFusion [13]. 
Because ElasticFusion algorithm uses surfels to generate and 
fuse point clouds, and proposes a deformation graph to 
ensure a globally consistent map during loop closures. The 
advantage of using surfels is that surfels are fit for classifying 
point clouds and parsing semantic information. Therefore, 
ElasticFusion algorithm is used to perform map rendering. 

 

Fig. 1. The output of our method: On the left,mapping result with dense 

point clouds on the ICL-NUIM lr_kt0 dataset by improved ElasticFusion 

only. On the right, semantic mapping on the same scene. 

Recent developments of semantic mapping focus on two 
aspects, one is to improve the accuracy of semantic 
segmentation to improve the quality of semantic maps, and 
the other is to utilize semantic information in the looping 
closure detection module in SLAM to get more consistent 
maps. The improvements can be found in the literatures 
[4,10,14]. [14] discussed the application of semantic maps 
but only considered few object classes in the semantic 
segmentation. [4] extracted semantic information of simple 
objects and ORB features to assist localization, in which the 
map representation is based on sparse point clouds map. [10] 
applied probabilistic multiplication to perform semantic 



mapping by mapping semantic segmentation results onto 
dense 3D point clouds. The semantic segmentation employed 
a probabilistic event model, which failed to  generate 
accurate semantic maps by probability multiplication. As 
such, this work aims to improve the accuracy of semantic 
maps by directly generate semantic maps from the outcome 
of semantic segmentation instead of mapping the results of 
semantic results onto 3D point clouds by probability 
multiplication. In our semantic mapping proposal, PSPNet 
acts as a front-end for semantic segmentation of RGB images 
and ElasticFusion algorithm is adopted as a back-end to 
generate semantic maps through semantic images and depth 
images. The ICL-NUIM dataset is chosen to verify the 
feasibility of our method, as shown in Figure 1. The semantic 
maps can well represent the categories of objects while 
ensuring the accuracy of their geometric properties.  

In the remainder sections, we first discuss related work 
and then introduce our method in detail. Experiments on 
ICL-NUIM datasets is discussed in Section IV and the final 
section for conclusion. 

II. RELATED WORK 

The related work of semantic segmentation and semantic 
map rendering are introduced respectively. Semantic 
segmentation has been improved considerably since FCNs [5] 
was proposed. FCNs has three major contributions that leads 
to performance improvement, including using a 1×1 
convolutional layer to represent spatial information, adopting 
a transposed layer to retain the original resolution of input 
images and proposing the conception of skip connection to 
boost semantic segmentation robustness. Based on FCNs, 
many improvements are achieved through adding more 
layers to the networks or fine-tuning the structure of the 
networks, such as Deeplab [7], ICNet [8] and SegNet [9]. 
Besides the structural modification, some researchers made 
full use of the CRF and MRF to improve the performance of 
semantic segmentation [15,16,17]. And [18] adopted 
Recurrent Neural Network and CRF to perform semantic 
segmentation. Comparing with the above neural networks, 
PSPNet [6] obtains better results in either indoors or 
outdoors environments. 

Rendering semantic maps for robots is a challenging task 
in semantic SLAM. With the development of deep learning, 
semantic labelling mostly relies on CNNs or RNNs and 
departs from SVM. Researchers attempts to achieve object 
detection and semantic labelling using different sensors in 
SLAM system [3,19,20,21]. [4] presented the concept of 
probabilistic data association to help localization and looping 
closure detection in SLAM by using semantic information. 
This method significantly improved the accuracy of 
estimated trajectories but only produce maps with simple 
representation of geometry and texture. [22] focued on 
labelling more categories of objects and improving the 
accuracy of semantic segmentation on each frame image. [19] 
emphasized on the use of semantic maps which only 
represented a few objects. [10] adopted a mapping method of 
mapping semantic annotation results into 3D reconstruction 
point clouds to gain 3D semantic annotated maps by 
probability multiplication, but the edges of the objects were 
fuzzy.  

 There are two better performing frameworks in semantic 
mapping. One is performing semantic segmentation in front-
end and mapping the semantic segmentation results onto 3D 

point clouds in back-end, such as SemanticFusion. The other 
is mapping with semantic information and visual features 
directly, such as [4]. Our method is most related to 
SemanticFusion [10], using mature convolutional neural 
networks and ElasticFusion algorithm. We combined the 
semantic segmentation results with depth images as inputs to 
generate 3D semantic point clouds maps instead of mapping 
the semantic segmentation results to 3D point clouds maps 
by probability multiplication in [10]. 

III. METHOD 

There are two modules in our semantic mapping pipeline 
(see Figure 2), a Convolutional Neural Network for semantic 
segmentation, PSPNet, and a dense visual SLAM system, 
ElasticFusion. As for semantic segmentation in either indoor 
or outdoor environments, PSPNet provides accurate semantic 
segmentation results for each RGB image, which consists of 
three channels, R, G, and B. Because of the combination of 
many RGB images and depth images, point cloud can be 
generated. Then for map rendering, ElasticFusion takes 
results of semantic segmentation and original depth images 
as inputs to make semantic maps. In the following two 
sections, two modules are discussed in detail. 

 

Fig. 2. An overview of our method 

A. Semantic Segmentation using PSPNet 

PSPNet introduced a pyramid pooling module, which 
served as a expressive contextual prior that was capable of 
extracting global contextual information for semantic 
segmentation and scene parsing. For example, it’s less likely 
to label a boat in the river as a car when taken the context 
river into account [6]. While retaining the advantages of 
FCNs, PSPNet improves the accuracy of semantic 
segmentation through incorporating multilevel information 
provided by a pyramid pooling module. The network 
architecture of PSPNet is shown in Figure 3 [6]. The original 
RGB images are taken as CNNs’ input to get feature maps, 
which are important to the pyramid pooling module. After 
the processing of the pyramid pooling module, concatenating 
pooling results to do decoding and up sampling, the 
segmentation results are obtained.  



 

Fig. 3. The PSPNet architecture [6] 

Different from SemanticFusion[10] which uses four 
channel images (RGB and Depth), our semantic 
segmentation process only requires RGB images and does 
not rescale the input images. Due to the lack of labelled 
depth images for model training, SemanticFusion converts 
the 0-255 color range to 0-8m depth range by increasing the 
weights [10]. This operation might sabotage the precision of 
semantic segmentation since the underlying assumptions of 
perspective distortion does not always hold. For instance, 
there are the cases of dislocation that make it difficult to 
obtain accurate depth. Therefore, in our method, depth 
images are used to generate point clouds only and RGB 
images are used to make semantic segmentation in order to 
ensure the accuracy of semantic segmentation.  

B. Map rendering using improved ElasticFusion 

The ElasticFusion algorithm consists of four steps: 
transforming RGB images and depth images into point 
clouds and obtaining the coordinates and normal vectors of 
point clouds, estimating pose parameters by ICP algorithm 
and photometric method to perform point clouds registration, 
using random ferns algorithm to achieve loop closure 
detection, integration and updating of point clouds. 
ElasticFusion algorithm uses surfel-based representation to 
model observed scenes, it is more suitable for semantic 
labelling. However, there are some shortcomings in the 
process of using ElasticFusion algorithm, such as poor model 
quality of local point clouds in certain objects (see Figure 4). 
Therefore, we make minor improvements to the algorithm by 
altering the strategy of searching matching points in ICP 
algorithm. 

 

Fig. 4. Illustration of poor model quality of local point clouds 

 

 

Fig. 5. Illustration of search of the matching points of the given pose point 

using projection method 

Original ICP algorithm search the matching points by 
using projection method, as shown in Figure 5. And ICP 
algorithm solves the optimal pose parameters iteratively, 
while the matching relationships in the point pairs remain 
constant during the iteration process. Therefore, whether the 
matching points are selected properly or not, it directly 
undermines the accuracy of the pose parameters and thus the 
reconstruction results of the point cloud model. Our method 
introduces a new point searching strategy to the projection-
baesd matching points selection. A circular search region  
with a certain radius is first drawn, and then all candidate 
points containing the frame point cloud are traversed to find 
the best matching point, as shown in Figure 6.  

 

Fig. 6. Illustration of search of the matching points using cicles with 

different centers 

For instance, to search a matching point of , all points 
contained in the circular search area are candidates 

. The optimal search can be formulated as the 
solution of the equation 

  

where  is an adjustable weight,  is the normal vector of 
point . The selected match point  can be denoted as: 

  

According to the situation of including candidate points, 
the black center and circle are selected. The center is the 
midpoint of the line segment and the radius of the circle is 
1.5 times the length of the line segment, as shown in Figure 6. 
When an appropriate initial matching point cannot be 
selected according to the projection method, either the 
starting point  or the ending point  in the frame point 

cloud is selected to determine the radius  or 

 of the circular search area, as shown in Figure 7. 

 

Fig. 7. Illustration of search of the matching points without an initial 

matching point 



IV. EXPERIMENTS 

To testify the feasibility of our method, we evaluate it in 

this section in two parts, including the quality of 

reconstruction based on improved ElasticFusion algorithm 

and the results of semantic mapping. The experiments were 

implemented on a laptop with an Intel Core i7-7820HK 2.90 

GHz CPU and an Nvidia GTX 1070 GPU. The datasets we 

used are ICL-NUIM datasets, which provided by the 

Imperial College London and the National University of 

Ireland Maynooth jointly. The datasets are mainly used to 

evaluate visual odometry, indoor 3D reconstruction and 

SLAM system. 

A. Improved ElasticFusion Algorithm 

We used dyson_lab and ICL-NUIM datasets to verify the 
performances of our method on model reconstruction. In this 
part, we evaluate the quality of the reconstruction (Figure 8 
and 9) and camera trajectory estimation respectively (Figure 
10), and illustrate two experimental results briefly (the left 
image shows the result of the original algorithm and the right 
image shows the result of the improvement). Figure 8 shows 
the comparison results on dyson_lab data, Figure 9 and 10 
show the comparison of reconstruction results and camera 
trajectories (red is the ground truth of the camera trajectories, 
green is the original algorithm’s camera trajectories 
estimation, blue is the improved algorithm’s camera 
trajectories estimation in Figure 10). 

 

Fig. 8. The comparison results on dyaon_lab data 

 

Fig. 9. The comparison results on lr_kt3 data 

 

Fig. 10. The comparison charts of the camera trajectories on lr_kt3 data 

The improved algorithm reduces the time of final loop 
closure detection and the probability of loop failure while the 
original algorithm has a certain probability that the failure of 
loop closure detection results in poor reconstruction effect in 
Figure 8. The experimental results demonstrate that the 
accuracy of pose parameter estimation and the quality of 
model reconstruction could be significantly improved by 
modifying the strategy of the matching point selection in ICP 
algorithm, which serve as a solid basis for accomplishing 
semantic mapping. 

B. Semantic mapping 

We utilized PSPNet in TensorFlow to implement 
semantic segmentation on RGB images. We first trained the 
networks for over 1 day, and performed semantic 
segmentation results for over 5 hours on using each ICL-
NUIM dataset. Then we fused the results with depth images 
to generate semantic maps using improved ElasticFusion 
algorithm. As shown in Figure 11, SemanticFusion [10] 
failed to produce integral object labels. Yet our method 
manages to generate complete shape geometries of the 
labeled objects. Figure 1 and 12 show the experimental 
results on two scenes in the datasets, one for living room 

datasets (Figure 1， 12 (a) and (b) ) and the other for office 

room datasets (Figure 12 (c) and (d) ). The left images 
illustrate the reconstruction results by the improved 
ElasticFusion, the middle images are the results of semantic 
mapping by SemanticFusion and the right ones show the 
results of semantic mapping in our method.  

 

Fig. 11. SemanticFusion’s result [10] 



 

Fig. 12. The comparison results on serveal ICL-NUIM data 



Experimental results demonstrate that with high accuracy 
outcome of semantic segmentation on each image, our 
method could obtain a high quality semantics map and each 
object has clearly edges and better details. But our method is 
not as good as SemanticFusion to reconstruct the geometric 
structure of the room, as shown in the figure 12 (c) and (d). 
The reason is the deviation of semantic segmentation results 
from the same object on multi images, as shown in figure 13. 
The next step is to improve the accuracy of semantic 
segmentation by introducing high order CRF. 

 

Fig. 13. The deviation of semantic segmentation results 

V. CONCLUSIONS 

We fused semantic segmentation images with original 
depth images, which takes full advantage of PSPNet and 
improved ElasticFusion algorithm respectively, to obtain 
semantic maps. The early results on dyson_lab and ICL-
NUIM datasets have shown that the proposed method could 
obtain better 3D reconstruction models and accurate 
semantic labels. Since the method is too computational 
expensive, it can only work in an off-line mode. Thus, it’s 
desirable to develop an on-line version for real-time semantic 
mapping.  
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